
Assessing the validity of human cytoarchitectonic *V5/MT+* maps for functional imaging

Wilms M

Institute of Medicine, Research Centre Jülich, Jülich, Germany

To date, the delineation of the human visual "motion area" still relies on functional paradigms originally devised to identify monkey area MT. Using fMRI, we have identified putative human area V5/MT+ in normals by modelling the BOLD responses to alternating radially moving and stationary dot patterns. Functional activations were compared to cytoarchitectonic probability maps of its putative correlate area hOc5 which was calculated based upon data from histological sections from 10 human post-mortem brains. Bilateral visual cortex activations were seen in the single subject $dynamic\ vs.\ stationary\ contrasts\ and\ in the group\ random-effects\ analysis\ (Figure).$ Comparison of group data with area hOc5 revealed that 19.0 % / 39.5 % of the right / left functional activation were assigned to the right / left hOc5. Conversely, 83.2 % / 53.5 % of the right / left hOc5 were functionally activated. Comparison of functional probability maps (fPM) with area hOc5 showed that 28.6 % / 18.1 % of the fPM were assigned to hOc5. In turn, 84.9 % / 41.5 % of area hOc5 were covered by the respective fPM.

Figure: Overlap of functional group analysis *t*-maps (*yellow*: small volume correction; *blue outline*: whole brain correction) with area *hOc5* (*white*), both superimposed on a coronal section of the reference brain.

Conclusions: Random-effects data and fPMs yielded similar results. The present study shows for the first time the correspondence between the functionally defined human V5/MT+ and the post-mortem cytoarchitectonic area hOc5 (1).

(1) Wilms, Eickhoff, Specht, Amunts, Shah, Malikovic, Fink (2005) Anat & Embryol, 210:485-495 *Acknowledgments*: Support by the Deutsche Forschungsgemeinschaft (DFG KFO-112) is gratefully acknowledged.